Selected Solutionsfor Chapter 22:
Elementary Graph Algorithms

Solution to Exercise 22.1-7

BBT (i, ) = Zbiesz = Zbiebje

ecFE ecE
e Ifi =j,thenb;.bj. = 1(itis1-1o0r(—1)-(—1)) whenever enters or leaves
vertexi, and 0 otherwise.
s Ifi # j,thend;.bje = —1 whene = (i, j) ore = (j, i), and O otherwise.

Thus,

degree of = in-degree+ out-degree if = j ,

BBT .’ N — . .
2y —(# of edges connectingand ;) ifi .

Solution to Exercise 22.2-5

The correctness proof for the BFS algorithm shows that = &(s, u), and the
algorithm doesn’t assume that the adjacency lists are irpartjcular order.

In Figure 22.3, ift precedese in Adj[w], we can get the breadth-first tree shown
in the figure. But ifx precedes in Adj[w] andu precedey in Adj[x], we can get
edge(x, u) in the breadth-first tree.

Solution to Exercise 22.3-12

The following pseudocode modifies the DFS and DF&1Y procedures to assign
values to theec attributes of vertices.



22-2

Selected Solutions for Chapter 22: Elementary Graph Algorithms

DFS(G)
for each vertex € G.V

u.color = WHITE
u.m = NIL

time =0
counter = 0
for each vertex € G.V

if u.color == WHITE
counter = counter + 1
DFS-VIsIT(G, u, counter)

DFS-ViIsIT(G, u, counter)

u.CC = counter /! label the vertex
time = time+ 1
u.d = time

u.color = GRAY
for eachv € G.Adj[u]

if v.color == WHITE
V.T = U

DFS-VisIT(G, v, counter)

u.color = BLACK
time = time+ 1
u.f = time

This DFS increments a counter each time DF &4V is called to grow a new tree
in the DFS forest. Every vertex visited (and added to the) trgeDFS-VISIT is
labeled with that same counter value. Thwsc = v.ccif and only if u andv are
visited in the same call to DFS49IT from DFS, and the final value of the counter
is the number of calls that were made to DF&NM by DFS. Also, since every
vertex is visited eventually, every vertex is labeled.

Thus all we need to show is that the vertices visited by eatha®FS-VisIT
from DFS are exactly the vertices in one connected compafeit

All vertices in a connected component are visited by onetcalDFS-MiSIT
from DFS:

Letu be the first vertex in componeat visited by DFS-MSIT. Since a vertex
becomes non-white only when it is visited, all verticesCinare white when
DFS-VisIT is called foru. Thus, by the white-path theorem, all vertice<n
become descendants wfin the forest, which means that all verticesGnare
visited (by recursive calls to DFS4%1T) before DFS-VSIT returns to DFS.

All vertices visited by one call to DFS-¢IT from DFS are in the same con-
nected component:

If two vertices are visited in the same call to DFSsWr from DFS, they are in
the same connected component, because vertices are wiBlieldy following
paths inG (by following edges found in adjacency lists, starting freome
vertex).



Selected Solutions for Chapter 22: Elementary Graph Algorithms 22-3

Solution to Exercise 22.4-3

An undirected graph is acyclic (i.e., a forest) if and onlaiDFS yields no back

edges.

« Ifthere’s a back edge, there’s a cycle.

* If there’s no back edge, then by Theorem 22.10, there are taé/ edges.
Hence, the graph is acyclic.

Thus, we can run DFS: if we find a back edge, there’s a cycle.

* Time: O(V). (NotO(V + E)Y)
If we ever segV/| distinct edges, we must have seen a back edge because (by
Theorem B.2 on p. 1174) in an acyclic (undirected) forgst,< |V| — 1.

Solution to Problem 22-1

a. 1. Suppos€u,v) is a back edge or a forward edge in a BFS of an undirected
graph. Then one af andv, sayu, is a proper ancestor of the other) (n
the breadth-first tree. Since we explore all edges b&fore exploring any
edges of any ofi’'s descendants, we must explore the e@lge) at the time
we explorex. But then(u, v) must be a tree edge.

2. In BFS, an edgéu, v) is a tree edge when we setr = u. But we only
do so when we sat.d = u.d + 1. Since neither.d norv.d ever changes
thereafter, we have.d = u.d + 1 when BFS completes.

3. Consider a cross edde, v) where, without loss of generality, is visited
beforev. At the time we visitu, vertexv must already be on the queue, for
otherwise(u, v) would be a tree edge. Becausés on the queue, we have
v.d < u.d 4+ 1 by Lemma 22.3. By Corollary 22.4, we haved > u.d.
Thus, eithenw.d = u.dorv.d = u.d + 1.

b. 1. Supposdu,v) is a forward edge. Then we would have explored it while
visiting u, and it would have been a tree edge.

2. Same as for undirected graphs.

3. For any edggu,v), whether or not it's a cross edge, we cannot have
v.d > u.d + 1, since we visitv at the latest when we explore ed@e v).
Thus,v.d <u.d + 1.

4. Clearly,v.d > 0 for all verticesv. For a back edgéu, v), v is an ancestor
of u in the breadth-first tree, which means thadl < u.d. (Note that since
self-loops are considered to be back edges, we couldihave.)



