
Selected Solutions for Chapter 22:
Elementary Graph Algorithms

Solution to Exercise 22.1-7
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� If i D j , thenbiebje D 1 (it is 1 � 1 or .�1/ � .�1/) whenevere enters or leaves
vertexi , and 0 otherwise.

� If i ¤ j , thenbiebje D �1 whene D .i; j / or e D .j; i/, and 0 otherwise.

Thus,

BBT .i; j / D

(

degree ofi D in-degreeC out-degree ifi D j ;

�.# of edges connectingi andj / if i ¤ j :

Solution to Exercise 22.2-5

The correctness proof for the BFS algorithm shows thatu:d D ı.s; u/, and the
algorithm doesn’t assume that the adjacency lists are in anyparticular order.

In Figure 22.3, ift precedesx in AdjŒw�, we can get the breadth-first tree shown
in the figure. But ifx precedest in AdjŒw� andu precedesy in AdjŒx�, we can get
edge.x; u/ in the breadth-first tree.

Solution to Exercise 22.3-12

The following pseudocode modifies the DFS and DFS-VISIT procedures to assign
values to thecc attributes of vertices.
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DFS.G/

for each vertexu 2 G:V
u:color D WHITE

u:� D NIL

time D 0

counter D 0

for each vertexu 2 G:V
if u:color == WHITE

counter D counter C 1

DFS-VISIT.G; u; counter/

DFS-VISIT.G; u; counter/

u:cc D counter // label the vertex
time D time C 1

u:d D time
u:color D GRAY

for each� 2 G:AdjŒu�

if �:color == WHITE

�:� D u

DFS-VISIT.G; �; counter/
u:color D BLACK

time D time C 1

u: f D time

This DFS increments a counter each time DFS-VISIT is called to grow a new tree
in the DFS forest. Every vertex visited (and added to the tree) by DFS-VISIT is
labeled with that same counter value. Thusu:cc D �:cc if and only if u and� are
visited in the same call to DFS-VISIT from DFS, and the final value of the counter
is the number of calls that were made to DFS-VISIT by DFS. Also, since every
vertex is visited eventually, every vertex is labeled.

Thus all we need to show is that the vertices visited by each call to DFS-VISIT

from DFS are exactly the vertices in one connected componentof G.

� All vertices in a connected component are visited by one callto DFS-VISIT

from DFS:

Let u be the first vertex in componentC visited by DFS-VISIT. Since a vertex
becomes non-white only when it is visited, all vertices inC are white when
DFS-VISIT is called foru. Thus, by the white-path theorem, all vertices inC

become descendants ofu in the forest, which means that all vertices inC are
visited (by recursive calls to DFS-VISIT) before DFS-VISIT returns to DFS.

� All vertices visited by one call to DFS-VISIT from DFS are in the same con-
nected component:

If two vertices are visited in the same call to DFS-VISIT from DFS, they are in
the same connected component, because vertices are visitedonly by following
paths inG (by following edges found in adjacency lists, starting fromsome
vertex).
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Solution to Exercise 22.4-3

An undirected graph is acyclic (i.e., a forest) if and only ifa DFS yields no back
edges.

� If there’s a back edge, there’s a cycle.
� If there’s no back edge, then by Theorem 22.10, there are onlytree edges.

Hence, the graph is acyclic.

Thus, we can run DFS: if we find a back edge, there’s a cycle.

� Time: O.V /. (Not O.V C E/!)
If we ever seejV j distinct edges, we must have seen a back edge because (by
Theorem B.2 on p. 1174) in an acyclic (undirected) forest,jEj � jV j � 1.

Solution to Problem 22-1

a. 1. Suppose.u; �/ is a back edge or a forward edge in a BFS of an undirected
graph. Then one ofu and�, sayu, is a proper ancestor of the other (�) in
the breadth-first tree. Since we explore all edges ofu before exploring any
edges of any ofu’s descendants, we must explore the edge.u; �/ at the time
we exploreu. But then.u; �/ must be a tree edge.

2. In BFS, an edge.u; �/ is a tree edge when we set�:� D u. But we only
do so when we set�:d D u:d C 1. Since neitheru:d nor �:d ever changes
thereafter, we have�:d D u:d C 1 when BFS completes.

3. Consider a cross edge.u; �/ where, without loss of generality,u is visited
before�. At the time we visitu, vertex� must already be on the queue, for
otherwise.u; �/ would be a tree edge. Because� is on the queue, we have
�:d � u:d C 1 by Lemma 22.3. By Corollary 22.4, we have�:d � u:d.
Thus, either�:d D u:d or �:d D u:d C 1.

b. 1. Suppose.u; �/ is a forward edge. Then we would have explored it while
visiting u, and it would have been a tree edge.

2. Same as for undirected graphs.
3. For any edge.u; �/, whether or not it’s a cross edge, we cannot have

�:d > u:d C 1, since we visit� at the latest when we explore edge.u; �/.
Thus,�:d � u:d C 1.

4. Clearly,�:d � 0 for all vertices�. For a back edge.u; �/, � is an ancestor
of u in the breadth-first tree, which means that�:d � u:d. (Note that since
self-loops are considered to be back edges, we could haveu D �.)


